An Adaptive Partition-based Level Decomposition for Solving Two-stage Stochastic Programs with Fixed Recourse
نویسندگان
چکیده
We present a computational study of several strategies to solve two-stage stochastic linear programs by integrating the adaptive partition-based approach with level decomposition. A partition-based formulation is a relaxation of the original stochastic program, obtained by aggregating variables and constraints according to a scenario partition. Partition refinements are guided by the optimal second-stage dual vectors computed at certain first-stage solutions. The proposed approaches rely on the level decomposition with on-demand accuracy to dynamically adjust partitions until an optimal solution is found. Numerical experiments on a large set of test problems including instances with up to one hundred thousand scenarios show the effectiveness of the proposed approaches.
منابع مشابه
An Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse
We study an adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic program, and we study a finitely converging algorithm in which the partition is adaptively adjusted until it yields an optimal solution. A solution guided refinement strategy is developed to refine the partition by ...
متن کاملTwo-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods: Theory
We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results in Zhao [16] wherein it was shown that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrie...
متن کاملA Survey and Comparison of Optimization Methods for Solving Multi-Stage Stochastic Programs with Recourse
In the last decade, multi-stage stochastic programs with recourse have been broadly used to model real-world applications. This paper reviews the main optimization methods that are used to solve multi-stage stochastic programs with recourse. In particular, this paper reviews four types of optimization approaches to solve multi-stage stochastic programs with recourse: direct methods, decompositi...
متن کاملA class of volumetric barrier decomposition algorithms for stochastic quadratic programming
Ariyawansa and Zhu have introduced a class of volumetric barrier decomposition algorithms [5] for solving two-stage stochastic semidefinite programs with recourse (SSDPs) [4]. In this paper we utilize their work for SSDPs to derive a class of volumetric barrier decomposition algorithms for solving two-stage stochastic quadratic programs with recourse and to establish polynomial complexity of ce...
متن کاملDecomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse
Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016